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Abstract

The moment-of-fluid (MoF) method is an extension of popular volume-of-fluid (VoF) technique for tracking material
interface in multi-material fluid flows. VoF methods track the cell-wise material volumes and use these data for recon-
structing the interfaces in mixed cell. The MoF method goes one step further and, in additional to the volumes, keeps track
of the cell-wise material centroids; this approach provides sufficiently more information for the interface reconstruction
algorithm.

The MoF algorithm reconstructs interfaces in volume-conservative manner, by minimizing the defect of the 1st moment
in each mixed cell. In case of two materials, this strategy allows to construct the linear interface in a mixed cell using no
material volume data from the neighboring cells. Compared to the VoF interface reconstruction techniques, the MoF algo-
rithm shows higher accuracy and better resolution, allows uniform processing of internal and boundary cells.

In this paper we show how the same governing principle (minimization of the 1st-moment defect) can be used to recon-
struct the interfaces in case of multiple materials.
Published by Elsevier Inc.
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1. Introduction

Volume-of-fluid (VoF) method is a popular technique for tracking material interfaces in multi-material
fluid flows. Originally VoF was developed for Eulerian simulation of incompressible fluid flows with free
boundaries [12]. The popularity of VoF methods is due to simple treatment of the interface topology changes
and rigorous enforcement of mass conservation of each fluid component. Excellent reviews of the VoF meth-
ods and, in particular, interface reconstruction techniques can be found in the following papers [19,7,16,21,20].
We just want to remind some important details.
0021-9991/$ - see front matter Published by Elsevier Inc.
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Fig. 1. MoF algorithm for constructing a linear interface in a two-material mixed cell X: among all the subcells x with a linear interface
and the prescribed volume, find the one whose centroid xcðxÞ is closest to the given centroid x�. The algorithm uses no data from outside
the cell.
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On each time step, a typical VoF method:

� updates the material content of the cells, usually by computing fluxes through the cell boundaries,
� reconstructs the material interfaces in the mixed cells from the cell-wise material volumes.

The interface reconstruction is done in volume-conservative manner, which, along with fluxing, guaran-
tees the mass conservation for incompressible fluids. All VoF interface reconstruction algorithms are
formulated for two materials, i.e. split a mixed cell into two subcells. The most common interface approx-
imation consists of a single linear interface in each mixed cell. This class of interface reconstructions is
commonly called Piecewise-Linear Interface Calculation (PLIC). Since the material volumes are preserved
by the reconstruction, the location of the interface is uniquely determined by the direction of the interface
normal. There are many different algorithms to derive the interface normal in the VoF context (i.e. from
the material volumes for details refer to [8,13,24,22,17,18,14,3,7,16]). All of them rely on the material vol-
ume data from the neighboring cells, which prohibits them from resolving small (2–3 cell sizes and less)
interface details.

In order to improve the resolution of small details, a new volume-conservative interface tracking method
was proposed [9]. The central idea of the moment-of-fluid (MoF) approach is to supplement the VoF interface
reconstruction input data set with the cell-wise material centroids. The material volumes and centroids form a
natural input data set for the interface reconstruction, which contains the essential information about the
amount and the average location of each material in a mixed cell.

Similar to the VoF, the two-material MoF interface reconstruction algorithm [9] uses linear interface to
separate the materials in a mixed cell. The volume and centroid, or, equivalently, the first two moments of
the material provide sufficient amount of information to construct such a linear interface without any data

from the adjacent cells. The direction of the interface normal is determined through minimization of the dis-
crepancy between the actual and the prescribed centroids, subject to matching the prescribed volume exactly
(Fig. 1). The results of the MoF reconstruction is the volume-preserving mixed-cell partition that minimizes the
defect of the first moment. If the true interface is twice-differentiable, the MoF reconstruction is 2nd-order
accurate; if the true interface is linear, the reconstruction is exact. The numerical experiments [9] show that
the moment-based interface reconstruction demonstrates superior resolution and always results in smaller
absolute error, than traditional volume-based techniques.

Since the interface reconstruction is intended for multi-material fluid flow simulations, it is important to
have the interface reconstruction input composed of quantities that can be accurately advanced in time.
The fact that the material centroids in the incompressible flow move similarly to Lagrangian particles (see
Appendix A) makes them a perfect choice for the interface reconstruction input. One can consistently update



Fig. 2. The cell-wise material volumes and centroids required for the MoF interface reconstruction can be consistently updated by the
means of Lagrangian remap.
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the cell-wise material volume and centroids by means of Lagrangian remap: track the cell vertices back in time
to find the Lagrangian preimage of the cell, find all the intersections of the preimage with the pure-material
subcells from the previous time step, and then assign all the content of the preimage to the cell; the centroids
of the material enclosed in the preimage are advected forth in time along the streamlines (Fig. 2).

In this paper we would like to show how the moment-of-fluid technique is applied to the multi-material case.
Since the Lagrangian remap has no limitation on the number of material advected, there is no need to discuss
the update the moment data, and we can concentrate on a stand-alone interface reconstruction problem.

The mixed-cell cell partitioning can be a real problem in the case of multiple materials. Here we demon-
strate how the two-material MoF interface reconstruction algorithm can be used to perform a polygonal
partitioning of a mixed cell with M P 3 materials. Basically, we follow the strategy of the multi-material vol-
ume-of-fluid (VoF) method and use the two-material interface reconstruction algorithm for extracting mate-
rials from the mixture one by one. There is an essential difference though: the MoF interface reconstruction
does not require the user to specify the material order explicitly. The right order is determined automatically by
trying all M ! possible material orders and finding the one that results in the minimal defect of the first moment.

The search of the best mixed-cell partition does not limit the choice of partitioning scheme in any way.
Therefore, in order to achieve a lower defect of the first moment, one can expand the family of the trial par-
titions at will. For instance, instead of extracting materials from the mixture in series, one can separate them
according to the ‘‘divide-and-conquer” principle: choose an arbitrary m < M , separate the mixture of materi-
als 1; . . . ;m from mþ 1; . . . ;M , and then recursively apply this algorithm to each submixture. This procedure
allows to generate M !ðM � 1Þ! B-Tree partitions to choose from, which significantly increases the chances of
finding an approximate partition that fits given moment data best.

After introducing the basic notations and formulating the problem, we review the multi-material interface
reconstruction schemes used in the VoF context, and then describe and test the multi-material MoF algorithm
with the two types of the mixed-cell partitionings: the serial and the B-Tree partitionings (more than three
materials).

2. Problem formulation

Consider a polygon X that represents a mixed cell containing M P 3 different materials. Let xm be a subset
of X that specifies the space occupied by the mth material, m ¼ 1; . . . ;M . Since fxmgM

m¼1 represents a partition,
i.e. the cell fractions (subcells) occupied by different materials do not overlap and there is no void, then
XM

m¼1

jxmj ¼ jXj; ð1Þ
where jxj denotes the volume (area) of a plane set x � R2.



Fig. 3. Example of the volume-conservative interface reconstruction.
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If all the materials have polygonal shapes, the whole partition is referred to as polygonal; in this case we
equip each subcell symbol with an extra ‘‘p” subscript: xp;m.

Suppose that partition fx�mg
M
m¼1 specifies a true distribution of materials in the mixed cell. The objective of

the volume-conservative interface reconstruction (Fig. 3) is to find an approximate polygonal partition fx�p;mg
M
m¼1

of X that preserves the volumes of all materials:
Fig. 4
interfa
symme

distanc
jx�p;mj ¼ jx�mj; m ¼ 1; . . . ;M :
The first question one would ask is how to measure the proximity of the partitions? Clearly, two partition are
only as close to each other as their respective material fractions. We introduce three different measures of the
proximity between the true subcells and their reconstructed counterparts (Fig. 4):
� the defect of the first moment:
DM1 ¼ jjM1ðx�p;mÞ �M1ðx�mÞjj ¼ jx�mj jjxcðx�p;mÞ � xcðx�mÞjj;
. The reconstruction errors illustrated. X is a hexagonal mixed cell, Cðx�Þ and Cðx�pÞ are the true and reconstructed material
ces, respectively. DC is the maximum deviation of the true interface Cðx�Þ from the reconstructed one Cðx�pÞ; Dx is the area of the

tric difference between the true and reconstructed subcells (in dark grey); the defect of the first moment DM1 is proportional to the
e Dx between the true and reconstructed centroids (x� and x�p, respectively).
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where
M1ðxÞ ¼
Z

x
xdx 2 R2
is the first moment of a plane set x � X,
xcðxÞ ¼M1ðxÞ=jxj

is the respective centroid (subject jxj > 0), and jjxjj denotes the Euclidean norm of x 2 R2;

� the area of the symmetric difference between the true and reconstructed subcells (the area between the true and

reconstructed interfaces):
Dx ¼ jx�p;mMx�mj ¼ jx�p;m n x�mj þ jx�p;m n x�mj ¼ 2ðjx�mj � jx�m \ x�p;mjÞ;
� the (Hausdorff) distance between the subcell boundaries:
DC ¼ distðox�p;m; ox�mÞ � max max
x2ox�p;m

min
y2ox�m

jjx� yjj; max
x2ox�m

min
y2ox�p;m

jjx� yjj
� �

:

The reasons for considering three different subcell approximation errors are the following. The defect of
the 1st moment DM1 is the error that is explicitly minimized in moment-based reconstruction. The sym-
metric-difference area Dx gives the sense of the average distance between the true and reconstructed
boundaries; we also find it convenient for direct measurements. And the DC error, which shows the max-

imum deviation of the reconstructed interface from the true one, is a standard choice of the reconstruction
error.

The partition approximation errors can be defined as the vector-norm combinations of the respective sub-
cell approximation errors:

� the cumulative defect of the first moment:
DM1 ¼
XM

m¼1

jjM1ðx�p;mÞ �M1ðx�mÞjj
2

( )1=2

;

� the cumulative symmetric-difference area:
Dx ¼
XM

m¼1

jx�p;mMx�mj
2

( )1=2

;

� the maximum distance between the boundaries:
DC ¼ max
16m6M

distðox�m; ox�pmÞ:
Among these three types of the partition approximation error, DM1 is the weakest, and DC is the stron-
gest one (convergence in DC implies convergence in Dx, and convergence in Dx implies convergence in
DM1). By default the reconstruction error is measured in terms of DC. Thus, a reconstruction is known
to be kth-order accurate, if it results in DC ¼ OðhkÞ for all sufficiently small h (the size of the cell). Since
both the true and the approximate interfaces are confined within the cell, an arbitrary partitioning is at

least 1st-order accurate. Following the common practice, we specify the order of accuracy of a reconstruc-
tion algorithm in terms of DC. There is a simple rule to reckon the order of accuracy of a two-material
interface reconstruction algorithm: if it can reproduce any linear interface exactly, the algorithm is 2nd-
order accurate, otherwise it is only 1st-order accurate. In case of multiple materials one can use a similar
rule: if the algorithm reconstructs any polygonal partition of a given interface topology exactly, it can
reconstruct any partition of the same interface topology with twice-differentiable interfaces with 2nd-order
accuracy; otherwise the algorithm is just 1st-order accurate (with respect to the partitions of the given
topology).
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The second question would be: what kind of approximate mixed-cell partitions are of interest to us? We are
looking for the solution fx�p;mg

M
m¼1 in the class of the polygonal partitions that can be obtained from X with

a series of successive dissections (like the one shown in Fig. 3b). The main reason for this choice is that all
known volume-conservative interface reconstruction methods are formulated in terms of two materials, i.e.
are able to divide a mixed cell into two part (most commonly, with a linear interface). Therefore, the dis-
section is the simplest (and usually the only) basic operation available for constructing a multi-material
partition.

3. Volume-of-fluid legacy

The volume-of-fluid (VoF) methods perform the volume-conservative interface reconstruction based on the
cell-wise material volume data only. As we have mentioned in the introduction, all VoF interface reconstruc-
tion algorithms rely on the material volume data from the direct neighbors of the mixed cell. Therefore in the
course of this section we always assume that X is surrounded by other cells that provide the data for the eval-
uation of the interface normals.

3.1. The partitioning scheme choices

We were able to identify four different partitioning schemes based of the two-material interface reconstruc-
tion (Fig. 5). Since there is no established name convention for the multi-material interface reconstruction
schemes, we took the liberty to come up with our own.

Partitioning scheme 1 (Independent Dissections (ID), mentioned in [5]). In a completely independent manner

calculate M linear interfaces inside X; such that the mth interface, m ¼ 1; . . . ;M , separates the mth material from

the rest.

The mth material occupies the space x�p;m behind the mth interface, m ¼ 1; . . . ;M .

Since the reconstruction preserves the material volumes, the cell fractions fx�p;mg
M
m¼1 obtained with the

Independent Dissections inevitably overlap, leaving the room for a void. The resulting material distribution
Fig. 5. Two different material layouts on the left: a filament and a T-junction; and their reconstructions obtained with various partitioning
schemes. The true interfaces have no curvature and extend linearly to the direct neighbors. The material order used for reconstruction is
specified on the true layouts. Independent Dissections (second column) always result is material overlaps and form a void. There is no
difference between the Parallel, Nested, and Serial Dissections in reconstructing a layered material structure (top row), but their
reconstructions of a T-junction (bottom row) are quite different: the Parallel Dissections fail, because the interface bounding material 1,
and the interface bounding the mixture of materials 1 and 2 do intersect, the Nested Dissections deliver only 1st-order accurate result,
while the Serial Dissections are 2nd-order accurate (reconstruct polygonal partitioning exactly).
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in a mixed cell is completely unphysical (fx�p;mg
M
m¼1 is not a valid partition of X), but still may be considered

acceptable by those who perform the reconstruction in hydrodynamic simulations just to decrease the diffu-
sion of the interfaces. With M P 3 at least one subcell in any polygonal partition has a non-linear interface
(it could be several separate linear segments, one or several separated polylines); one can not reproduce it
exactly with a single linear segment. Therefore, this algorithm is always 1st-order accurate. On the positive
side, all M interfaces can be calculated in parallel.

Partitioning scheme 2 (Parallel Dissections (PD), commonly referred to as the ‘‘onion-skin” model [23,5]).
Given a particular material order, in a completely independent manner calculate M � 1 linear interfaces

inside X, such that the mth interface, m ¼ 1; . . . ;M � 1, separates the mixture of the first m materials from

the rest.

If the mth interface is located behind the ðmþ 1Þth one for all m ¼ 1; . . . ;M � 2; then the partitioning can be

completed successfully, otherwise the partitioning fails. In the former case the resulting interfaces do not intersect
(are ‘‘parallel”), and therefore the materials can be placed as follows:

(1) the 1st material occupies the space x�p;1 behind the 1st interface,
(2) the 2nd material occupies the space x�p;2 between the 1st and the 2nd interfaces,.
..

(m) the mth material occupies the space x�p;m between the ðm� 1Þth and the mth interfaces,.
..
(M) at last, the Mth material occupies the space x�p;M in front of the ðM � 1Þth interface.

All the PD interfaces can be calculated in parallel, but a posteriori one has to check whether they define a
valid partition, i.e. whether the mth interface is actually located behind the ðmþ 1Þth interface,
m ¼ 1; . . . ;M � 2.

The Parallel Dissections can successfully resolve the layered material structure, but it is impossible to guar-
antee the success of the Parallel Dissections in a more general case.

Under the assumptions that:

(1) the true partition is C2-parallel (i.e. the interfaces do not intersect and are C2-differentiable),
(2) the right material order is given,
(3) the (two-material) interface reconstruction algorithm used is 2nd-order accurate.

The Parallel Dissections are 2nd-order accurate; this follows from the obvious fact that any polygonal par-
allel partition under the conditions (2) and (3) will be reconstructed by the Parallel Dissections exactly. Note
that, for any C2-parallel partition there exist two (mutually reversed) material orders that yield a 2nd-order
accurate result with the Parallel Dissections.

Partitioning scheme 3 (Nested Dissections (ND) [11]). Given a particular material order, in a completely inde-

pendent manner calculate the normals of all M � 1 Parallel Dissections interfaces (the actual locations of the PD

interfaces are irrelevant).

The materials are separated from the bulk one by one as follows:

(1) The 1st material x�p;1 is separated from the cell X with the linear interface that has the same normal as the

1st PD interface. The remaining part of the cell
xp;2þ � X n x�p;1
is further divided between the materials 2 through M.

(2) The 2nd material x�p;2 is separated from xp;2þ with the linear interface that has the same normal as the 2nd

PD interface. The remaining part of xp;2þ

xp;3þ � xp;2þ n x�p;2

is further divided between the materials 3 through M...

.

(m) The mth material x�p;m is separated from xp;mþ with the linear interface that has the same normal as the mth

PD interface. The remaining part of xp;mþ
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xp;ðmþ1Þþ � xp;mþ n x�p;m
is further divided between the materials mþ 1 through M...
.

(M) Finally, the remaining space x�p;M is intended for the Mth material.

The construction of the interfaces in this case can not be parallelized completely: although the evaluation of
the normals can be carried out in parallel, their actual locations can be identified only in series.

The Nested Dissections scheme can be viewed as a robust modification of the Parallel Dissections. Indeed,

� it always results in a valid partition,
� the ND and PD interface normals are always identical, and
� the ND and PD partitions are also identical, unless the Parallel Dissections fail.

Contrary to the Parallel Dissections, the Nested Dissections scheme does not require the materials to be
layered to get a valid partition. The result of the ND partitioning can be classified as a polygonal serial par-

tition. A mixed-cell partition is called C2-serial, if all the materials can be separated from the bulk one by one
with C2-differentiable interfaces. If the separating interfaces are linear, then the C2-serial partition is polygo-
nal. Parallel partition, introduced above, is a serial partition with non-intersecting interfaces.

One may think that it is possible to get a 2nd-order accurate ND reconstruction of any C2-serial partition.
Unfortunately, it is not true: the Nested Dissections are 2nd-order accurate only under the same conditions as
the Parallel Dissections are. The ND approximation to the C2-serial partition with intersecting interfaces is
only 1st-order accurate. This statement can be explained with a simple T-junction example (Fig. 5, bottom
row) The true interface bounding the group of the first two materials (the right order is assumed) is non-
smooth, and therefore its PD approximation is only 1st-order accurate, which automatically prohibits the
accuracy order of the ND reconstruction to be higher than 1.

We could not find any description of the Nested Dissections in literature; our knowledge of this partitioning
scheme comes from Garimella [11].

Partitioning scheme 4 (Serial Dissections (SD)). Given a particular material order, separate materials from the

bulk one by one as follows:

(1) Construct the linear interface that separates the 1st material x�p;1 from the cell X. The remaining part of the

cell
xp;2þ � X n x�p;1
is further divided between the materials 2 through M.

(2) Construct the linear interface that separates the 2nd material from xp;2þ. The remaining part of xp;2þ
xp;3þ � X n x�p;2
is further divided between the materials 3 through M...
.

(m) Construct the linear interface that separates the mth material from xp;mþ. The remaining part of xp;mþ
xp;ðmþ1Þþ � X n x�p;m
is further divided between the materials mþ 1 through M...
.

(M) Finally, the remaining space x�p;M is intended for the Mth material.

The construction of the individual interfaces by this partitioning scheme is completely serial. When evalu-
ating an interface normal, the Serial Dissections, unlike the Nested Dissections, take into account the fact that
some fraction of the cell interior has already been occupied by the higher-priority materials; this gives a chance
to calculate the interface normal with higher accuracy.

In order to get a 2nd-order accurate SD reconstruction of a C2-serial partition, it is absolutely essential to
separate the materials in adjacent multi-material cells synchronously. This requirement is explained by the
need to use the material volume data from the direct neighbors of the mixed cell for the evaluation of the inter-
face normal; in order to construct a 2nd-order accurate interface approximation, it is important to eliminated
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from consideration the space already occupied by all the preceding materials not only inside the mixed cell, but
also inside its direct neighbors. Therefore, a 2nd-order accurate SD reconstruction is feasible only for an iso-
lated cluster of adjacent multi-material cells that share a common material order.

When it comes to reconstructing a layered material structure, the Serial Dissections are more tolerant to the
material order choice than the Parallel Dissections: for any C2-serial partition there exist 2M�1 different mate-
rial orders that yield a 2nd-order accurate result with the Serial Dissections.

The requirement to construct the interfaces in adjacent mixed cells in sync makes the Serial Dissections
implementation in the VoF context cumbersome. We could not find any description of the Serial Dissections
in literature, but there is an evidence that this partitioning scheme is in use in LLNL [1].

After reviewing the partitioning schemes used with VoF, one may conclude that the multi-material inter-
faces reconstructed from the volume data can be 2nd-order accurate only for the layered and, conditionally,
for the serial material structure (all the interface between adjacent materials must be twice-differentiable).

3.2. The material ordering choices

All the multi-material partitioning schemes presented (save the Independent Dissections, which is not a
valid partitioning scheme per se) rely on the user-defined material order. Since the right choice of the material
order is crucial for the accurate reconstruction, a robust strategy for prioritizing the materials is of high
importance.

A convenient way to avoid this problem is to delegate the responsibility to determine the material order to
the end user. Nobody expects the user to intervene each time a multi-material interface reconstruction routine
is called; but the user can be helpful defining a fixed material order. For many problems in impact and pen-
etration, where the materials are known to keep the initial layer structure, the fixed order works well, but there
are simple interface configurations (like the D-junction shown in Fig. 15c or the ‘‘parquet” configuration from
Fig. 20), for which no fixed material order will work.

We are aware of three dynamic priority systems that can be used in static interface reconstruction1:

� Bailey [2] defines the material priority as the number of the surrounding cells containing the material. This
tactics determines the right sequence of the Serial Dissections (not the Parallel Dissections!) for a single fil-
ament co-aligned with the grid lines (Fig. 6a), but not for a diagonal filament (Fig. 6b).
� Mosso and Clancy [15] developed the system based on the approximate material centroids. They consider a

3� 3 cell block that includes a mixed cell with all its direct neighbors and calculate the approximate cen-
troids f~xmgM

m¼1 of the materials inside the block from the material volume data; for this purpose the cell-wise
material centroids are approximated by the cell centers:
1 We
system
recons
dynam
~xm ¼
X9

i¼1

jxm;ij
( )�1X9

i¼1

xcðXiÞjxm;ij; m ¼ 1; . . . ;M ;
here index i is used to specify a cell withing the 3� 3 cluster. After all the centroids are evaluated, the mate-
rials are arranged in the ascending order of their centroid distances from the origin; the origin is located at
the north–west corner of the 3� 3 block, if the set of the centroids has a dominantly negative slope
(Fig. 7a), and at the south–west corner otherwise.
The Mosso–Clancy system correctly determines the material order for a single filament (Fig. 7a), but may
give a wrong answer for a T-junction or for the layered materials of number 4 and more.Fig. 7b shows an
example of the T-junction, for which the Mosso–Clancy system assigns the priorities incorrectly: the dark
material on the right, although has to be separated the first, is assigned the lowest priority. We would like to
point out that there is some ambiguity in the origin location for this particular configuration. The rule for
estimating the slope of the centroid set is not deterministic in this case, and, depending on the choice of the
discuss here neither the CTH-code priority systems by McGlaun (mentioned in [5]) and by Bell and Hertel [4], nor the priority
for simulations with background material by Benson [6,7]: the systems used in the CTH code can not be used in static interface

truction, since their heuristics depend on the direction of the fluid flow, and the background-material priority system is not entirely
ic, since the background material is assigned the fixed priority.



Fig. 6. (a) The Bailey’s system correctly assigns the lowest priority to the filament material, if the filament is co-aligned with the grid lines;
(b) it erroneously assigns the highest priority to filament material, if the filament is the dominantly diagonal. The numerical labels above
specify the sequence number (reversed priority) of the material.
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centroid to start with, may place the origin at either the north–west or south–west corner. Neither choice of
the origin location helps the Mosso–Clancy system determine the right material order for this T-junction.
Fig. 7c shows an example of the four-material parallel partition, for which the approximate centroids of
two materials coincide. The Mosso–Clancy system does not have a recipe for this case. To make the situ-
ation even worse, one can break the symmetry of this configuration by rotating the interface between the
filaments around the cell center. If the interface rotates counterclockwise, the approximate centroid of the
right filament moves up, and the approximate centroid of the left filament moves down. For all sufficiently
small rotation angles the origin location stays at the north–west corner, and, according to Mosso and Clan-
cy, the right-filament material has higher priority over the left-filament material, which is not correct.
� Another priority system that relies on the material centroids was developed by Benson [6]. He does not

derive the centroid locations from the volume data, like Mosso and Clancy do, but considers the material
centroids to be independent parameters of the system and keeps track of them explicitly; strictly speaking,
Fig. 7. (a) The Mosso–Clancy system assigns higher priority to the material, whose approximate centroid is located closer to the origin

(the north–west or south–west corner of the 3� 3 cluster). (b) An example of the T-junction, for which the Mosso–Clancy priority system
assigns the lowest priority to the material that has to be separated first. (c) An example of the layered material structure with coinciding
approximate centroids, for which the Mosso–Clancy system can not assign the priorities correctly.



Fig. 8. The Benson’s system assigns the priorities according to the order of the material centroid projections on the line resulting from the
least square fit to the set of the centroids. There are two different material orders to choose from: the forward (grey) and reverse (black).
When the materials in the true partition are layered, like on picture (a), it does not pose a problem: both orders are equivalent for the
partitioning purposes and result in the same approximate partition. Otherwise, if the true interfaces form a junction, like on picture (b),
these two orders are not equivalent, and at least one of them is wrong.
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this feature prohibits the Benson’s priority system from being classified as volume-based (VoF).The mate-
rial order is given by the order of the centroid projections on the line determined by the least square fit to
the set of the centroids. This strategy successfully recovers the order of the layered materials even when
their number is high.
Note that the line to project the centroids on does not have a fixed positive direction. Depending on the
choice of the positive direction (which is completely arbitrary), one may get either the forward or the
reverse material order (see Fig. 8). For the layered material structure (Fig. 8a) these two orders are equiv-
alent: the Parallel Dissections will result in the same partition anyway. But if the true interfaces form a junc-
tion (Fig. 8b), at least one of the orders is wrong. Unfortunately, there is no way to distinguish between the
right and the wrong orders in this case.

Therefore, it is true to say that the material order can be confidently determined from the cell-wise material
volume data only for the layered material structure.
4. Moment-of-fluid perspective

In addition to material volumes fjx�mjg
M
m¼1, the moment-based interface reconstruction requires the material

centroids fx�mg
M
m¼1, where x�m � xcðx�mÞ, m ¼ 1; . . . ;M . One can see that in 2D material the cell-wise material

centroids and volumes, provide 3 times more information than the volumes alone. This extra information
can definitely be used to improve the quality of the interface reconstruction over the traditional volume-base
methods.

4.1. The partitioning scheme choices

Each of the multi-material partitioning schemes described in the previous section can be transparently
combined with the two-material MoF algorithm. There is an essential difference though. The MoF recon-
struction does not depend on the data from the adjacent cells. This fact makes the Serial Dissections, so
cumbersome and restrictive with VoF, the most suitable partitioning scheme for MoF: there is no need
to synchronize the construction the interfaces in adjacent multi-material mixed cells to get a 2nd-order accu-
rate result.

With the right material order, the SD reconstruction of a C2-serial partition is 2nd-order accurate; the SD
reconstruction of a polygonal serial partition is exact.
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4.2. Automatic material ordering

The major advantage of the MoF approach over the VoF one is that it can derive the right material order
automatically. The governing principle of the moment-based interface reconstruction is finding the volume-
preserving mixed-cell partition that minimizes the defect of the first moment. In the two-material case this prin-
ciple is used to determine the direction of the interface normal; in the multi-material case, it can be used to find
the right material order for the Serial Dissections. Strictly speaking, the right material order is determined
indirectly by performing the SD partitioning for each possible material order and choosing the one that results
in the minimal defect of the first moment (see Fig. 9).

Algorithm 1 (Multi-material MoF). Given a partitioning scheme, generate all possible trial partitions. For every

trial partition fxp;mgM
m¼1 evaluate the cumulative defect of the first moment
Fig. 9.
with a
mome
materi
DM1 fxp;mgM
m¼1

� �
¼

XM

m¼1

jjM1ðxp;mÞ �M1ðx�mÞjj
2

( )1=2

¼
XM

m¼1

jx�mj jjxcðxp;mÞ � xcðx�mÞjj
2

( )1=2

:

Choose the partition fx�p;mg
M
m¼1 that results in the minimal defect.

Whenever used in combination with the Serial Dissections partitioning scheme, the multi-material MoF
algorithm will be referred to as MoF–SD. Such an algorithm has combinatorial complexity in the num-
ber of materials: to get the answer, one has to try all M ! material orders. On the other hand, it is rea-
sonable to expect only a limited number of the mixed cells in the whole computational grid to contain
more than 2 materials. Therefore, for a moderate M, the computational overhead, associated with the
optimal order search, is not likely to be significant. Also, the various material orders can be effectively
tried in parallel.

The multi-material MoF algorithms tries to place the materials as close to their true locations as possible. If
the true partition is polygonal serial, then there exists a material order, for which the Serial Dissections result
As an illustration of the multi-material MoF strategy, we present here a C2-serial partition (a) and its SD approximations obtained
ll possible orders (b–g); at the bottom of each approximate partition we specify the respective (cumulative) defect of the first
nt. Note that, as long as the curvature of true interfaces is moderate (in our case the curvature radius R ¼ h), the order of the last two
als is not important. The approximate partition obtained with the right material orders (b and e) result in the lowest defect.



Fig. 10. Three types of the three-material cell mixed-cell layouts. The filament and the T-junction are examples of C2-serial partitions, but
the Y-junction is not. The coordinates of the points are given in h (size of the cell) units. All the interfaces have the same curvature 1=R.
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in the exact reconstruction. The exact reconstruction has zero defect of the first moment. And, since the polyg-

onal serial partition is uniquely identified by the set of the material centroids (the first moments), any other trial
serial partition should have a non-zero defect, i.e. can not be a minimizer. The last observation, along with the
fact that the first-moment defect continuously changes with the shape of the subcells, suggests that the MoF–
SD algorithm should guess the material order correctly not only for a polygonal serial partition, but also for
any C2-serial partition with the sufficiently low interface curvature.
Fig. 11. The test partitions (top row, the radius of the interface curvature R ¼ h) and their MoF reconstructions obtained with the Serial
Dissections (bottom row). The MoF algorithm tries to place the materials as close as possible to their true locations, even when the
structure of the true partition is beyond the scope of the partitioning scheme (the Y-junction).



Fig. 12. The test partitions (top row, the radius of the interface curvature R ¼ 64h) and their MoF–SD reconstructions (bottom row). As
the interface curvature vanishes, the MoF–SD reconstructions of the C2-serial layouts (the filament and the T-junction) converges to their
respective true partitions.
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We claim that the MoF–SD algorithm results in the 2nd-order accurate approximation to any C2-serial
partition.

4.2.1. Numerical tests
To support our claim, we tested three different mixed-cell layouts (see Fig. 10):

� a filament (no junction),
� a T-junction and
� a Y-junction.

The first two configurations are C2-serial partitions, the third one is not. The examples of the moment-
based reconstructions of these interface configurations for R ¼ h and R ¼ 64h are presented in Figs. 11 and
12, respectively.

Each of the three setups above is described by two parameters: the size of the cell h and the curvature 1=R of
the interfaces, which allow a unique non-dimensional combination h=R. The interface reconstruction errors
DM1, Dx, and DC, introduced in Section 2, should also be the functions of these two parameters. It is clear
that if the h=R ratio is fixed, then the interface reconstruction errors scale according to their respective
dimensions:
DM1 ¼ Oðh3Þ;
Dx ¼ Oðh2Þ;
DC ¼ OðhÞ;
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Fig. 13. The cumulative defect of the first moment DM1 as a function of the interface curvature 1=R (the size of the mixed cell is fixed
h ¼ 1).
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the expressions above may include the interface curvature only as a part of a non-dimensional constant:
DM1 ¼ Oððh=RÞa1 h3Þ;
Dx ¼ Oððh=RÞa2 h2Þ; ð2Þ
DC ¼ Oððh=RÞa3 hÞ;
where the exponents a1; a2; a3 depend only on the type of the junction and can be identified through the direct
error measurements.
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Fig. 14. The cumulative symmetric-difference area Dx as a function of the interface curvature 1=R (the size of the mixed cell is fixedh ¼ 1).

5376 V. Dyadechko, M. Shashkov / Journal of Computational Physics 227 (2008) 5361–5384
To find the exponents a1 and a2 for a particular type of the interface junction, we fixed the size of the mixed
cell h ¼ 1 and measured the dependence of the DM1 and Dx errors on the interface curvature; the results are
presented in Figs. 13 and 14. By evaluating the slopes of the error graphs, one may conclude that for the fil-
ament a1 ¼ 2; a2 ¼ 1, for the T-junction a1 ¼ a2 ¼ 1, and for the Y-junction a1 ¼ a2 ¼ 0.

Since the direct measurement of the maximum distance DC between the true and the reconstructed inter-
faces is somewhat tricky, we decided to use geometrical considerations to find a3. Let us take a look at the
average deviation DC of the reconstructed interface from the true one, which we define as
DC ¼ Dx=jCj;
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where jCj ¼ OðhÞ is the total length of the true interfaces inside the mixed cell. Since the true interfaces in our
experiments are piecewise-circular and the reconstructed ones are polygonal, DC and DC are equivalent, i.e. for
each particular type of the interface junction there exist constants 0 < c1 6 c2 independent of both h and R,
such that
Table
The as

Error

DM1

Dx
DC

Fig. 15
interfa
c1DC 6 DC 6 c2DC:
Therefore,
DC ¼ OðDCÞ ¼ OðDx=jCjÞ ¼ OðDx=hÞ;

which along with (2) results in a3 ¼ a2.

Table 1 summarizes the asymptotic behavior of the interface reconstruction errors. The MoF–SD recon-
struction is 2nd-order accurate, as long as the true partition is C2-serial (the filament or the T-junction);
for the Y-junction it is only 1st-order accurate.

4.3. Automatic material aggregation

The search of the best approximate mixed-cell partition, performed by the multi-material MoF algorithm,
does not limit the choice of partitioning scheme in any way. Therefore, in order to achieve a lower defect of the
first moment, one may expand the family of trial partitions at will. When a mixed cell contains four or more
materials, the Serial Dissections partitioning scheme yields a simple but powerful generalization: instead of
separating materials from the mixed cell one by one, one may recursively separate the groups of materials.

Partitioning scheme 5 (B-Tree Dissections (BTD)). Given a particular material order, pick an arbitrary m
between 1 and M � 1 to construct the linear interface that separates the first m materials from the rest, and then

recursively subdivide these two groups until all the materials are completely separated. The input moments for

separating a group of materials are given by the sum of the respective moments of all the constitutive materials.
1
ymptotic (h� R) behavior of the interface reconstruction errors

Filament T-junction Y-junction

Oðh5=R2Þ Oðh4=RÞ Oðh3Þ
Oðh3=RÞ Oðh3=RÞ Oðh2Þ
Oðh2=RÞ Oðh2=RÞ OðhÞ

. Three types of the four-material mixed-cell layouts. The coordinates of the points are given in h (size of the cell) units. All the
ces have the same curvature 1=R.



Fig. 16. The test partitions (top row, the radius of the interface curvature R ¼ h) and their MoF reconstructions obtained with the B-Tree
Dissections (middle row) and the Serial Dissections (bottom row). The MoF algorithm tries to put the materials as close to their true
locations as possible, even when the structure of the true partition is beyond the scope of the partitioning scheme (the D-junction layout is
beyond the scope of the B-Tree Dissections, all three layouts are beyond the scope of the Serial Dissections).
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This ‘‘divide-and-conquer” partitioning algorithm generates ðM � 1Þ! different partitions for a given mate-
rial order, which comes to the total of M !ðM � 1Þ! trial B-Tree partitions, compared to the total of M ! trial
serial partitions. With a greater number of trial partitions available, one can explore a more diverse family
of the interface layouts, and, therefore, has higher chances to attain a lower defect of the first moment.

The price one have to pay for these virtues is the higher complexity (additional factor of M � 1! compared
to the MoF–SD) of the multi-material MoF algorithm, which, in combination with the B-Tree Dissections
partitioning scheme, will be referred to as MoF–BTD. Once again we want to point out that it is reasonable
to expect only a limited number of mixed cells with more than three material in the whole grid. Therefore, the
computational overhead, associated with the search algorithm, is unlikely to be significant. The growth of
complexity can be partially compensated by the parallel implementation: once the two groups are separated,
one can refine them further completely independently.
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Note that the B-Tree Dissections partitioning scheme does not make much sense in the VoF context, since it
just complicates the choice of the right dissection order, which is problematic even with the much simpler
Serial Dissections.

The result of the B-Tree Dissections is a polygonal B-Tree partition. A mixed-cell partition of size M is
called a C2-differentiable B-Tree partition, if all the materials can be separated from the rest with M � 1 C2-
differentiable interfaces (the separating interfaces may form junctions, but may not cross each other). If the
separating interfaces are linear, then the C2-differentiable B-Tree partition is polygonal. Serial partition is a
B-Tree partition with fixed m ¼ 1 (see the description of the B-Tree Dissections above).

We claim that for any C2-differentiable B-Tree partition the MoF–BTD algorithm results in the 2nd-order
accurate approximation; if the B-Tree partition is polygonal, the result is exact.
Fig. 17. The test partitions (top row, the radius of the interface curvature R ¼ 64h), and their MoF reconstructions obtained with the B-
Tree Dissections (middle row) and the Serial Dissections (bottom row). As the curvature of the true interfaces vanishes, the MoF–BTD
reconstructions of the B-Tree layouts (the X-junction and the @-junction) converge to their respective true partitions.
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Fig. 18. The cumulative defect of the first moment DM1 as a function of the interface curvature 1=R (the size of the mixed cell is fixed
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4.3.1. Numerical tests

To support our claim and compare the accuracy of the MoF–BTD reconstruction to the accuracy of the
MoF–SD reconstruction, we tested three different mixed-cell layouts (see Fig. 15):

� an X-junction,
� an @-junction and
� a D-junction.
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Fig. 19. The cumulative symmetric-difference area Dx as a function of the interface curvature 1=R (the size of the mixed cell is fixed h ¼ 1).
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The first two configurations are C2-differentiable B-Tree partitions, but the third one is not. Neither of the
three partitions is C2-serial. The examples of the moment-based reconstructions of these interface configura-
tions for R ¼ h and R ¼ 64h are presented in Figs. 16 and 17, respectively.

For both algorithms we measured DM1 and Dx interface reconstruction errors at various Rs to build the
corresponding graphs (Figs. 18 and 19, respectively). By evaluating the slopes of the Dx graphs one can find
that the MoF–BTD reconstruction of the X- and @-junctions is 2nd-order accurate, and the MoF–BTD recon-
struction of the D-junction is only 1st-order accurate. The Serial Dissections can not reproduce the structure of
either of the test layouts and therefore their MoF–SD reconstructions are only 1st-order accurate. Table 2
summarizes the asymptotic behavior of the MoF interface reconstruction errors for all three test layouts.



Fig. 20. These four examples demonstrate the capabilities of the multi-material MoF technique. Although the true configurations are not
shown here, one can easily guess them, since their MoF reconstructions are very accurate; the ‘‘quilt” and ‘‘parquet” reconstructions are
exact. The top two examples require the employment of the B-Tree Dissections, while the bottom ones can be obtained with the Serial
Dissections. There is a fixed material order that can be used for ‘‘circles”, but no fixed order will work for the ‘‘parquet” configuration. We
would also like to emphasize the exceptional resolution of the MoF method: in case the ‘‘patchwork” and ‘‘parquet” configurations the
size of the color tiles is comparable to the size of the grid cells.

Table 2
The asymptotic ðh� RÞ behavior of the interface reconstruction errors

Error X-junction @-junction D-junction

Serial Dissections

DM1 Oðh3Þ Oðh3Þ Oðh3Þ
Dx Oðh2Þ Oðh2Þ Oðh2Þ
DC OðhÞ OðhÞ OðhÞ

B-Tree Dissections

DM1 Oðh5=R2Þ Oðh4=RÞ Oðh3Þ
Dx Oðh3=RÞ Oðh3=RÞ Oðh2Þ
DC Oðh2=RÞ Oðh2=RÞ OðhÞ
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At the end we would like to present four more configurations that can be accurately reproduced by the
multi-material MoF algorithm (Fig. 20).

5. Concluding remarks

We reviewed the multi-material VoF interface reconstruction strategies and presented a new multi-material
MoF algorithm.

Following the VoF strategy, the MoF algorithm can construct a serial mixed-cell partition by separating
materials from the cell one by one. The major advantage of the MoF approach over the VoF approach is that
the former provides sufficient data to choose the best approximate partition (derive the material order) auto-
matically. Also, the multi-material MoF algorithm can go beyond the traditional serial partitions and recon-
struct an arbitrary C2-differentiable B-Tree mixed-cell partition with 2nd-order accuracy, which can hardly be
achieved in the VoF context.

Although our discussion evolved around 2D cases, it is clear that all the partitioning and ordering strategies
described are dimension-independent and therefore are applicable in 3D.
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Appendix A. The centroid velocity

Let x be a parcel of incompressible fluid that moves in the velocity field vðxÞ. Then the velocity of its cen-
troid xcðxÞ is
d

dt
xcðxÞ ¼

1

jxj
d

dt

Z
x

xdx ¼ 1

jxj

Z
x
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dt
xdx ¼ 1

jxj
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If the velocity field is twice-differentiable, then
vðxÞ ¼ v0 þ G0ðx� x0Þ þOðjjx� x0jj2Þ;
where v0 � vðxcðxÞÞ is the velocity at the parcel centroid x0 � xcðxÞ, G0 � ½$v
ðxcðxÞÞ is the velocity gradient
at the parcel centroid.
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¼ v0 þOðd2Þ;
where d is the diameter of the parcel jxj.



5384 V. Dyadechko, M. Shashkov / Journal of Computational Physics 227 (2008) 5361–5384
As we see, the centroid velocity coincides with the velocity at the centroid location with up to Oðd2Þ. Also,
whenever vðxÞ is linear, the Hessian of v vanishes, and Oðd2Þ � 0: Therefore, with high confidence, one can
consider the centroid of the parcel to be a Lagrangian particle.
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